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Abstract. We study dynamics of a deformable entity (such as a vesicles under hydrodynamical constraints).
We show how the problem can be solved by means of Green’s functions associated with the Stokes equations.
A gauge-field invariant formulation makes the study of dynamics efficient. However, this procedure has
its short-coming. For example, if the fluids are not Newtonian, then no Green’s function is available in
general. We introduce a new approach, the advected field one, which opens a new avenue of applications.
For example, non-Newtonian entities can be handled without additional deal. In addition problems like
budding, droplet break-up in suspensions, can naturally be treated without additional complication. We
exemplify the method on vesicles filled by a fluid having a viscosity contrast with the external fluid, and
submitted to a shear flow. We show that beyond a viscosity contrast (the internal fluid being more viscous),
the vesicle undergoes a tumbling bifurcation, which has a saddle-node nature. This bifurcation is known
for blood cells. Indeed red cells either align in a shear flow or tumble according to whether haematocrit
concentration is high or low.

PACS. 87.16.Dg Membranes, bilayers, and vesicles – 47.55.Dz Drops and bubbles – 87.17.Jj Cell
locomotion; chemotaxis and related directed motion

1 Introduction

Studies of deformable entities under hydrodynamical con-
straints is a general problem of science. For example, this
problematic is essential in the understanding of blood rhe-
ology, liquid suspensions of Newtonian and non Newtonian
fluids, and so on. The deformation of these entities in a
shear flow, their alignment, or their breakup into smaller
entities affect the macroscopic behaviours of suspensions.
For example, when blood is submitted to a shear flow red
cells become elongated and oriented in the flow, conferring
to the blood thixotropic properties; that is a collapse of the
actual viscosity (which can attain a decade), also known
as shear thinning effect [1]. In small vessels, at low concen-
tration (haematocrit less than 2%), red blood cells tumble.
In the field of emulsions, when a droplet is suspended in
another fluid, the droplet may, under shear, break-up gen-
erating thus smaller droplets. It has been shown that the
particle size can drastically affect the toughness of blend
polymers. For example in one case it has been demon-
strated that toughness decreased fourfold when the aver-
age particle size increased from 0.7 µm to 0.8 µm [2]. In
the context of rheological properties, it seems natural to
concentrate first on the behaviour of an isolated entity.
On the other hand, there are several circumstances where
cells in the body often act as individual entities. Examples
of particular interest in the biological and medical science
is cell locomotion, like leucocytes moving in response to
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a tissue injury, or cell aggregation during embryo-genesis.
Of course the cell dynamics, besides flow, must include a
more realistic picture of cytoskeletton, cytoplasm, as well
as adhesion centers, when the motion imply a substrate.
For an introduction to vesicle migration, see [3,4].

The aim of this contribution is to introduce a new
approach for studying deformable entities under exter-
nal constraints, like, for example, under a shear flow. For
definiteness most of the discussion will be oriented to-
wards vesicle dynamics, but we must keep in mind that
the method works perfectly well in a variety of situations.
In order to put the study in the context we shall review
the ordinary method, and the power of geometry when a
boundary (like the vesicle surface) is treated in the sharp
limit sense. This part should also be very useful when local
models for dynamics are used. In Section 2 we introduce
the system and basic ingredients, we also introduce a toy
model which offers a nice ground for identifying several
dynamical features. In Section 3 we introduce the realistic
model where hydrodynamics are taken into account. Sec-
tion 4 introduces the new approach, with an application
to vesicles under shear flow. Summary and outlook will be
presented in Section 5.

2 The model

We consider the following situation: a deformable entity,
taken here to be a vesicle for definiteness, is filled with a
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Fig. 1. A schematic view of a vesicles. The membrane is made
of a bi-layer, each is composed of a 2D fluid-like phase of phos-
pholipid molecules.

fluid having viscosity ηin and is suspended in a fluid having
a viscosity ηout. The vesicle is subject to a hydrodynamical
external flow, which is taken to be (without restriction) a
linear shear flow vx = γy, where γ is the shear rate.

Vesicles are closed membranes suspended in an aque-
ous solution (Fig. 1), and we shall concentrate on this
system at least for two reasons. On the one hand it con-
stitutes a model system (in comparison to red cells, where
it is likely that the cytoskeletton plays an important role).
They can be viewed as a minimal cytoplasmic membrane
model. On the other hand it lends itself to a relatively well
controlled experimental manipulation, and thus a compar-
ison with models can be made.

On the scale of the vesicle size (10–100 µm), the width
of the membrane is so small (few nm) that it can be viewed
as a geometrical location, or surface of discontinuity. It will
be shown later, however, that conferring a finite width to
the membrane has proven to be extremely useful. For the
sake of simplicity we shall confine ourselves to a two di-
mensional problem (the membrane is a contour). In order
to show the benefit of the advected field approach, we shall
first review the models used so far for the study of vesicle
dynamics.

2.1 Geometry

This part is not only a review within the context of vesi-
cles, but also regarded as a powerful method whenever one
treats the boundaries as sharp (as a geometrical surface).
From geometrical considerations it is a simple matter to
derive an evolution equation for the contour in terms of
the normal velocity vn and the curvature. An elementary
derivation is presented in [5]. The curvature κ is taken
to be positive for a circle. The evolution equation for the
curvature κ [5] involving derivatives with respect to the
arclength s is

∂κ

∂t
= −

(
∂2

∂s2
+ κ2

)
vn + vt

∂κ

∂s
(1)

where vt is the tangential velocity. This equation is exact
where only geometrical concepts are evoked. The tangen-
tial velocity appearing here is a gauge, it does not rep-
resent the velocity of matter, rather it is simply the ve-
locity of a point at fixed curvilinear coordinate, and thus
is fixed by the contour parameterization. Since a drift of

the parametrization along the contour does not affects the
shape, the tangential velocity is arbitrary. In the presence
of hydrodynamics of course there is a tangential physical
velocity which reacts on the normal one. Since in this part
no hydrodynamics is included the tangential velocity is a
gauge. A particular gauge, which will determine a partic-
ular definition of the tangential velocity, which has proven
to be efficient in numerical treatments [5] is

∂(s/L)
∂t

= 0 , (2)

where L is the total arclength. This condition implies [5]

vt(s) = −
∫ s

0

ds′κvn +
s

L

∮
ds′κvn . (3)

Within this gauge, the evolution equation for the curva-
ture becomes

∂κ

∂t
=−

(
∂2

∂s2
+κ2

)
vn +

∂κ

∂s

[
s

L

∮
ds′ κvn−

∫ s

0

ds′κvn

]
.

(4)

Gauge problems usually result in nonlocality. The physics
is contained in the normal velocity, a question on which
we direct our attention now.

A vesicle is a two dimensional fluid which does not re-
sist to shear. The soft modes are bending modes, like in
thin plates. If the membrane is viewed as a two dimen-
sional geometrical surface, there are two invariants, which
are the mean and the Gaussian curvatures. The energy
associated with bending has the following form

Eb =
κm

2

∫
κ2dA+

κg

2

∫
κ1κ2dA+ P

∫
dV +

∫
ζdA

(5)

where κ is the mean curvature κ = κ1 + κ2, κm and κg

are the mean membrane rigidity and the Gaussian one;
that the first term is quadratic in κ simply implies that
for a geometrical surface the bending energy does not de-
pend on the sign of κ. We have to keep in mind, however,
that because of the membrane thickness this is not al-
ways correct; see the contribution of I. Bivas. The second
term in the energy is a topological invariant owing to the
Gauss-Bonnet theorem. Thus, if one is not interested in
topological changes, this term can be disregarded, as we
will adopt in what follows. For a two dimensional geom-
etry, this term is of course absent as well. Finally P and
ζ are two Lagrange multipliers enforcing a constant vol-
ume inside the vesicle (the fluid is incompressible), and
a constant surface (the membrane is locally incompress-
ible). ζ is a function of position along the membrane and
of time. We only request a global condition for the fluid
incompressibility (i.e. the pressure field is constant) rather
than the usual local condition since the geometrical model
we consider here does not incorporate hydrodynamics, and
thus only provides informations on the global volume of
the vesicle. When hydrodynamics is included the two con-
ditions of incompressibility are formally the same. They
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are both written as a vanishing of a divergence of velocity
field (one in the bulk and the other along the contour).
In the bulk the incompressibility is fulfilled thanks to the
pressure field, while that along the surface is fixed thanks
to a tension field. With the latter condition one has to
follow the membrane which is advected by the velocity
field.

The reaction force of the vesicle is obtained from the
functional derivative of Eb, and one obtains in 2D:

f ≡ −δEb

δr
=

[{
κm

(
∂2κ

∂s2
+
κ3

2

)
− κζ − P

}
n +

∂ζ

∂s
t
]

(6)

n and t are respectively the normal and tangential unit
vectors at current point r of the membrane. One has to
relate now the force to the velocity field. This relation is
nonlocal due to hydrodynamics. Intuitively, a force of a
portion of the membrane acting on the fluid in which it is
suspended disturbs the flow around it, affecting thereby
other portions of the membrane. Since hydrodynamics
possess no intrinsic lengthscale (like in electrostatics), the
effect is of long range. Before presenting full dynamics is
is instructive, however, to consider a local model.

2.2 A local model

A local model where dynamics depends on local velocity
is the first example of dynamics to be considered here. We
introduce the following dissipation functional

Fd =
η

2

∫
|v|2ds . (7)

The coefficient η is here an effective viscosity and has the
dimension of a viscosity per unit length (due to the 2D ge-
ometry of the model). Neglecting inertial terms, the Euler-
Lagrange equations for a dissipative dynamics provides

ηvn = κm

(
∂2κ

∂s2
+
κ3

2

)
− κζ − P , ηvt =

∂ζ

∂s
· (8)

The tangential velocity is defined up to an additive gauge,
as we have seen. For example if ∂ζ

∂s = 0, then there is
no physical tangential velocity, and the only remaining
contribution is a gauge. In order to determine an equation
for ζ, the membrane local incompressibility is imposed,
entailing

t·∂v
∂s

=
∂vt

∂s
+ vnκ = 0 (9)

a relation fixing ζ as a function vn and κ. Dynamics can
thus be determined completely as a function of κ only.
We have [6] solved numerically the problem of vesicles
moving by haptotaxis, a terminology referring to a mo-
tion induced by an adhesion gradient along the substrate.
Figure 2 shows a typical shape. The adhesion potential is
chosen as

w(r) = w0(1 + u0x)
(
y4
0

y4
− 2y2

0

y2

)
, (10)

Fig. 2. A typical profile of a vesicle moving to the right in an
adhesion gradient.

y0 fixes the characteristic distance between the substrate
and the membrane, and ŵ(x) = −w0(1 + u0x) the mini-
mum of the potential interaction, occurring for y = y0. It
depends linearly on x with an adhesion gradient u0. We
must supplement the force by the adhesion contribution.
Writing the adhesion energy as

∫
w(x)dx we obtain for

the additional force

fw = −(cw + ∇w · n)n . (11)

The Lagrange multiplier P is fixed by imposing that the
enclosed area (volume in 3D) is fixed, due to the incom-
pressibility of the fluid. This means that

∫
vnds = 0, from

which we obtain

P = −ζ〈κ〉 + 〈v0
n〉 (12)

where we have defined vn = v0
n − P − κζ, and 〈...〉 stands

for (1/L)
∫
...ds, L being the vesicle perimeter.

3 Nonlocal model

As stated before the motion of vesicles is nonlocal owing
to the long range hydrodynamical equations. Thus for the
sake of comparison with realistic situations we must in-
clude nonlocal interactions. The Reynolds number is small
so that the hydrodynamics equations become linear (the
Stokes limit). By means of Green’s functions the velocity
field at any point in the fluid can be related to the forces
by (where the viscosities inside and outside the vesicle are
equal)

v(r, t) =
∫

memb

T · f ′ ds′ +
∫

subs

T ·
(
−η∂v

′

∂y′
+ p′ŷ

)
dx′ .

(13)

T is the Oseen tensor [7,8] and ŷ is a unit vector. For
brevity we set v′ ≡ v(r′, t) and T ≡ T (r, r′). The first
term in equation (13) represents the membrane contribu-
tion, with f the membrane forces (the sum of 6 and 11).
The second term accounts for the presence of the wall.
Here p′ denotes the pressure field, and because that pres-
sure is compatible with the fluid incompressibility con-
dition (used in order to obtain the Oseen tensor), there
is no need for introducing the analogue of the Lagrange
multiplier P met in the last section. The determination
of ζ follows for the membrane incompressibility as before.
The wall reaction term can be determined by requiring
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v = 0 on the substrate, and inverting numerically the in-
tegral equation (13). The membrane velocity is equal to
the fluid velocity, providing us with the tangential and
normal velocity to be used in dynamics as in the last sec-
tion. This method allows to handle several problems such
as migration in an adhesion gradient, lift force of viscous
nature [3,4], and so on. This method is powerful, but is
limited to a restricted range of situations. This is why we
have developed a new approach which opens many new
lines of inquiries.

4 New approach: the advected field

Although the integral formulation presented above, com-
bined with geometry, is powerful, the general applicability
is limited to problems where the underlying field equations
(like the hydrodynamics equations) are linear, otherwise
the Green’s function techniques can not be used. Thus,
in principle one has to discretize the full field equations
and solve them with boundary conditions, and especially
on the vesicle contour, which changes dynamically. This
requires at each time a front tracking procedure, which
is, in general, difficult to implement. In addition, if sev-
eral deformable entities are present one has to track each
boundary, and to specify rules (by hand, and thus often
in an ad-hoc manner) on their possible coalescence, bud
emission, and so on. We introduce a new powerful method,
the advected field approach. This method bypass front
tracking, notwithstanding their straightforward numerical
implementation.

The basic ingredient of the method consists in intro-
ducing an auxiliary field, φ(r, t) which is continuous across
the boundary, albeit it varies quite rapidly. That field
takes a value, say φ = −1, inside the vesicle and φ = 1 out-
side. The profile has a tanh-like shape across the bound-
ary. The rapid variation of φ encodes the boundary po-
sition. This field must be coupled to the hydrodynamical
field, and possibly to other fields, and written in such a
way that the usual equations (in the sharp limit sense) are
recovered when letting the extent of the rapid variation go
to zero (a step function). The field will be advected (i.e.
transported by the flow), and this induces the shape evo-
lution. This is why we name this method as the advected-
field. The field φ is governed by the following equation

∂φ

∂t
= −v · ∇φ+ εφ

(
−δEintrinsic

δφ
− κε2 |∇φ|

)
(14)

where we recognize an advection (transport) term, the
−v · ∇ contribution, which couples the auxiliary field to
the flow, and a relaxation term which produces a tanh-
like profile across the boundary according to the intrinsic
energy functional

Eintrinsic[φ] =
∫ ∫

dxdy
{

1
4
(1 − φ2)2 +

ε2

2
(∇φ)2

}

(15)

which is the classical double-well potential for a fluid-fluid
equilibrium, for example. The width of the boundary is
ε
√

2. εφ is a constant related to the relaxation time of the
profile to its tanh-like shape. The term which is propor-
tional to |∇φ| in (14) is here to suppress the wall energy
associated with φ [9]. A vesicle exchanges no matter with
the underlying bulk phase, so that its area is constant; a
vesicle has no intrinsic surface tension. The next step is
to specify dynamics of the velocity field in the whole do-
main, i.e. which is valid in the interior as well as in the
exterior. For that purpose one must determine the mem-
brane forces. The Helfrich free energy in the advected-field
sense takes the form

Eb =
κm

2

∫ ∫
dx dy κ2 |∇φ|

2
+

∫ ∫
dx dy ζ

|∇φ|
2

· (16)

The curvature field κ can easily be expressed in terms of
φ if we define the normal vector field n and the tangential
one t as: n = ∇φ/|∇φ|, t = n ∧ z. This definition corre-
sponds to the choice: dt/ds = −κn in curvilinear coordi-
nates. One can easily check that κ = +∇·n·ζ(r, t) is, in the
sharp-boundary spirit (as seen before), a Lagrange multi-
plier which enforces local incompressibility of the vesicle
area in the course of time. The functional derivative of Eb

provides us with the membrane force

f =
[
κm

{
κ3

2
+ t · ∇(t · ∇κ)

}
n− ζκ n + t · ∇ζ t

] |∇φ|
2

·
(17)

This expression coincides with (6) when ε → 0. Once the
force is known, the velocity field equation in the whole
domain can be written. This takes the form

εv
∂v
∂t

= η∆v −∇P + f (18)

where εv is a density scale which is related to the relax-
ation time. εv is chosen in such a way that inertia are
small enough (the Stokes limit). The pressure field must
be adjusted to ensure incompressibility:

∇ · v = 0.

In the presence of a viscosity contrast between the in-
terior and exterior of the vesicle η∆v in the Stokes equa-
tion is substituted by ∂i(η(∂ivj + ∂jvi)). Summation over
repeated indices is implied. A convenient prescription for
the viscosity is η = ηout(1+φ)/2+ηin(1−φ)/2. Finally, in
order to ensure local incompressibility of the membrane,
the field ζ is governed by the following dynamical equation

∂ζ

∂t
= −v · ∇ζ + T t · (t · ∇)v (19)

where T is a tension-like constant and t.(t.∇)v represents
t · ∂v/∂s in the sharp boundary limit, which is nothing
but the local lateral extension rate of the membrane (see
Eq. (9)). ζ is then a tension field proportional to the local
lateral elongation of the membrane, and as the auxiliary
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Fig. 3. A typical situations where the vesicle undergoes a tank-
treading motion characterized by an angle ψ(t), and the arrows
represent the velocity field. On sees that the membrane is ad-
vected by the flow, causing a tank-treading, which in turn in-
duces a flow inside the vesicle.

field φ it is transported by the flow (−v ·∇ term). Choos-
ing a large enough T enforces incompressibility. Note that
the field ζ, like the advected field φ is defined over the
entire domain. Its action is however only limited close to
the membrane thanks to the gradient of φ appearing in
the force (17). We can show that the equations of motion
reduces to the usual sharp boundary set, when ε→ 0. This
is a singular perturbation problem which will be treated
elsewhere [10].

Several tests have been performed in order to ascer-
tain the numerical validity of the advected field approach.
(i) We have checked that starting from an arbitrary ini-
tial shape the vesicle relaxes towards its equilibrium shape
in the absence of any external constraint (external flow
for example). (ii) We have checked that under a linear
shear-flow the vesicle aligns at an angle ψ with respect
to the flow direction. That angle decreases monotonously
when the swelling factor decreases; the swelling factor is
defined as τ = 4πS/P2, S is the internal area, P the
perimeter (2D); for a circle τ = 1, and τ < 1 otherwise.
The overall behaviour is in agreement with the finding of
Kraus et al. [11] based on an integral formulation. This
work was limited to the situation with no viscosity con-
trast, r ≡ ηin/ηout = 1. Even including just a viscosity
contrast requires some deal within the boundary integral
formulation, due to the so-called double layer contribu-
tion [7]. In contrast, within the advected field approach
the implementation of a viscosity contrast is automati-
cally performed; it suffices to choose the numbers ηin and
ηout at will. In addition, if the constitutive fluid equation is
nonlinear (not of Stokes type), obviously a boundary inte-
gral formulation can not be used at all. This circumstance
is the rule rather than the exception in the industrial rhe-
ological liquids, in the physiological transports, and so on.

r

ψ

Tumbling
Steady
orientation

rc

Fig. 4. A schematic view of the behaviour of the angle ψ
as a function of the viscosity contrast r for a given swelling
factor τ . At r = rc the stable branch (solid line) merges with
the unstable one (dashed line), whereby a new time-dependent
solution characterized by ψ(t) takes place. This is a saddle node
bifurcation.

This method is used first in order to study the be-
haviour of a vesicle in a shear flow with a viscosity con-
trast. The overall finding of this study can be summarized
as follows. For r < rc (where rc is a function of the swelling
factor τ) the vesicle assumes an orientation with an an-
gle ψ, like for the case with r = 1. The membrane (which
is fluid-like) executes a tank-treading like motion as de-
picted in Figure 3. Note that in a tank only the treads
rotate, the tank itself does not, while here the fluid inside
is moving as well. The angle decreases upon increasing r.
The interesting feature is that if r = rc the solution cor-
responding to a steady orientation of the vesicle ceases to
exist whereby a new solution appears. The vesicles under-
goes a tumbling motion, while its membrane continues to
tank-tread. The tumbling threshold rc is a function of τ .
The tumbling is not an ordinary instability where below
threshold the system withstands infinitesimal perturba-
tions, while beyond it is unstable. Here in contrast the
stable branch disappears after merging with an unstable
one (see Fig. 4). This is called a saddle-node bifurcation. It
must be noted that this transition does not exist for rigid
particles since tank-treading is then impossible. A rigid
particle placed in a shear flow always tumble, and thus
the tank-treading regime is characteristic of deformable
objects.

In blood red cells align under shear flow. If the same
blood is diluted enough for the cell-cell interaction to be
negligible, the red cell assumes a tumbling motion [12].
The viscosity of the interior of the human red cell is about
6−7 that of water, while the plasma has a viscosity of
about 1.2–1.3 times the water viscosity. The tumbling
threshold found here depends on the swelling factor. If
one considers the swelling factor of a human of red cells
τ ∼ 0.7, we find that the threshold for tumbling is of
about r ∼ 6. In other words it seems that the value of the
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viscosity ratio between interior and exterior of red cells
is to put them close to a critical value for tumbling. We
are not yet aware of whether this is accidental or rather
it does have a physiological basis.

5 Summary

We have presented a new approach for the study of de-
formable entities under hydrodynamical constraints. The
method has been presented for vesicles in 2D. An exten-
sion to 3D is straightforward and is currently under study.
This method is powerful and has a much wider scope than
the traditional boundary integral formulation based on the
Green’s functions. Of course the method can be used for
the study of various situations such as droplet dynamics
suspended in another fluid. The method has no special re-
striction on whether the fluids are Newtonian or not. Thus
extension to non Newtonian fluids can be made along the
same strategy.
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